IOTA Occult: Difference between revisions
Jump to navigation
Jump to search
Nicole Sharp (talk | contribs) No edit summary |
Nicole Sharp (talk | contribs) |
||
(2 intermediate revisions by the same user not shown) | |||
Line 3: | Line 3: | ||
== Single Site Location == | == Single Site Location == | ||
* Longitude = −78.64295803600204° = −78°38'34.648929607344" | * Longitude = −78.64295803600204° = −78°38'34.648929607344" = <var>λ</var> | ||
* Latitude= +39.70671465844075° = +39°42'24.172770386700" | * Latitude= +39.70671465844075° = +39°42'24.172770386700" = <var>φ</var> | ||
* Altitude = +359.239990234 m | * Altitude = +359.239990234 m = <var>h</var> | ||
* Site Name = "Rocky Gap Maryland State Park" | * Site Name = "Rocky Gap Maryland State Park" | ||
* Aperture = 12.7 cm | * Aperture = 12.7 cm = <var>D</var> | ||
* Magnitude Limit = +11.019018604779784321234937109136 = 5log( | * Magnitude Limit = +11.019018604779784321234937109136 = 5log(<var>D</var>/cm) + 7.5 − 2 = <var>m</var> | ||
* Radius(1°) = 111.16791595551869935196304026982 km = 69.076540475820395982439453758687 mi. = 69.1 mi. = <var>d</var> = <math>\frac{2\pi}{360}\sqrt{\frac{(\cos[\phi]r_{\mathrm{e},\oplus}^2)^2+(\sin[\phi]r_{\mathrm{p},\oplus}^2)^2}{(\cos[\phi]r_{\mathrm{e},\oplus})^2+(\sin[\phi]r_{\mathrm{p},\oplus})^2}}</math> | |||
* Radius(0.1°) = 11.116791595551869935196304026982 km = 6.9076540475820395982439453758687 mi. = 6.91 mi. = <var>d</var>/10 | |||
== see also == | == see also == | ||
* <u>[[astronomical events]]</u> | * <u>[[astronomical events]]</u> | ||
* <u>[[Solar System data]]</u> | |||
[[category:astronomy]] | [[category:astronomy]] | ||
[[category:notes]] |
Latest revision as of 06:50, 10 June 2024
Notes on using the International Occultation and Timing Association (IOTA) Occultation Prediction Software (Occult).
Single Site Location
- Longitude = −78.64295803600204° = −78°38'34.648929607344" = λ
- Latitude= +39.70671465844075° = +39°42'24.172770386700" = φ
- Altitude = +359.239990234 m = h
- Site Name = "Rocky Gap Maryland State Park"
- Aperture = 12.7 cm = D
- Magnitude Limit = +11.019018604779784321234937109136 = 5log(D/cm) + 7.5 − 2 = m
- Radius(1°) = 111.16791595551869935196304026982 km = 69.076540475820395982439453758687 mi. = 69.1 mi. = d = [math]\displaystyle{ \frac{2\pi}{360}\sqrt{\frac{(\cos[\phi]r_{\mathrm{e},\oplus}^2)^2+(\sin[\phi]r_{\mathrm{p},\oplus}^2)^2}{(\cos[\phi]r_{\mathrm{e},\oplus})^2+(\sin[\phi]r_{\mathrm{p},\oplus})^2}} }[/math]
- Radius(0.1°) = 11.116791595551869935196304026982 km = 6.9076540475820395982439453758687 mi. = 6.91 mi. = d/10